Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 98(5): 1530-1547, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37072921

RESUMEN

Urban ecology is a rapidly growing research field that has to keep pace with the pressing need to tackle the sustainability crisis. As an inherently multi-disciplinary field with close ties to practitioners and administrators, research synthesis and knowledge transfer between those different stakeholders is crucial. Knowledge maps can enhance knowledge transfer and provide orientation to researchers as well as practitioners. A promising option for developing such knowledge maps is to create hypothesis networks, which structure existing hypotheses and aggregate them according to topics and research aims. Combining expert knowledge with information from the literature, we here identify 62 research hypotheses used in urban ecology and link them in such a network. Our network clusters hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems. We discuss the potentials and limitations of this approach. All information is openly provided as part of an extendable Wikidata project, and we invite researchers, practitioners and others interested in urban ecology to contribute additional hypotheses, as well as comment and add to the existing ones. The hypothesis network and Wikidata project form a first step towards a knowledge base for urban ecology, which can be expanded and curated to benefit both practitioners and researchers.


Asunto(s)
Ecología , Ecosistema , Biota , Fenotipo
2.
Sci Rep ; 13(1): 2702, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792660

RESUMEN

Insect-provided pollination services are increasingly threatened due to alarming declines in insect pollinator populations. One of the main threats to insect pollinators and consequently pollination is urbanisation. Here, we investigate the effects of local habitat quality (patch size, flowering plant richness, bare soil cover, vegetation structure), degree of urbanisation (impervious surfaces) and 3D connectivity on bee, hoverfly and butterfly flower visitors and plant-flower visitor networks in flower-rich urban dry grasslands. Overall, the degree of urbanisation and the quality of the local habitat influenced the flowering plant and pollinator communities. Although flowering plant abundance increased with urbanisation, bee species richness and butterfly species richness decreased with increasing impervious surfaces. Flowering plant richness and ground nesting resource availability were positively related to bee richness and local vegetation structure boosted hoverfly and butterfly visitation rates. In terms of plant-pollinator interactions, insect pollinators visited a lower proportion of the available flowering plants in more urbanised areas and network modularity and specialisation increased with patch size. Our findings show that urban dry grasslands are valuable habitats for species-rich pollinator communities and further highlight the importance of minimizing the intensity of urbanisation and the potential of local management practices to support insect biodiversity in cities.


Asunto(s)
Mariposas Diurnas , Magnoliopsida , Abejas , Animales , Urbanización , Pradera , Insectos , Ecosistema , Flores , Polinización
3.
Ecol Appl ; 33(2): e2759, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36217895

RESUMEN

Urban gardens can support diverse bee communities through resource provision in resource poor environments. Yet the effects of local habitat and landscape factors on wild bee communities in cities is still insufficiently understood, nor is how this information could be applied to urban wildlife conservation. Here we investigate how taxonomic and functional diversity of wild bees and their traits in urban community gardens are related to garden factors and surrounding landscape factors (e.g., plant diversity, amount of bare ground, amount of nesting resources, amount of landscape imperviousness). Using active and passive methods in 18 community gardens in Berlin, Germany, we documented 26 genera and 102 species of bees. We found that higher plant species richness and plant diversity as well as higher amounts of deadwood in gardens leads to higher numbers of wild bee species and bee (functional) diversity. Furthermore, higher landscape imperviousness surrounding gardens correlates with more cavity nesting bees, whereas a higher amount of bare ground correlates with more ground-nesting bees. Pollen specialization was positively associated with plant diversity, but no factors strongly predicted the proportion of endangered bees. Our results suggest that, aside from foraging resources, nesting resources should be implemented in management for more pollinator-friendly gardens. If designed and managed using such evidence-based strategies, urban gardens can create valuable foraging and nesting habitats for taxonomically and functionally diverse bee communities in cities.


Asunto(s)
Ecosistema , Jardines , Animales , Abejas , Animales Salvajes , Jardinería , Ciudades , Plantas , Polinización
4.
Sci Rep ; 12(1): 16649, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198897

RESUMEN

Wild boar is increasingly establishing populations in the outskirts of European cities, with the largest German urban population occurring in Berlin. Related soil disturbance in grasslands is common and often considered as damage to biodiversity. However, it is unknown how animal and plant species in urban grasslands respond to wild boar activity - an important limitation for conservation management. We sampled plants, grasshoppers and sand lizards in 22 dry grasslands and measured wild boar activity. We show that plant diversity decreased with rooting intensity, but not species richness, endangered or specialist species. Relationships with animals were mostly positive. Grasshopper diversity, total richness and richness of endangered and specialist species were positively related to rooting, as was sand lizard abundance. These relationships contrast to mostly negative effects in the wild boar's non-native range. This first multi-taxa study in a large city suggests that soil disturbance by wild boars is not necessarily a threat to biodiversity. An implication for conservation is to consider the context-dependence of biodiversity responses to wild boar activity. For dry grasslands, disturbed patches should be accepted in management plans rather than re-vegetated by seeding.


Asunto(s)
Saltamontes , Suelo , Animales , Biodiversidad , Pradera , Plantas , Sus scrofa , Porcinos
5.
Oecologia ; 199(1): 165-179, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35505250

RESUMEN

Cities are considered important refuges for insect pollinators. This has been shown repeatedly for wild bees, but may also be true for other diverse taxa such as hoverflies. However, our understanding of how urban environmental filters shape pollinator species communities and their traits is still limited. Here, we used wild bee and hoverfly species, communities and their functional traits to illustrate how environmental filters on the landscape and local scale shape urban species pools. The multi-taxon approach revealed that environmental filtering predominantly occurred at the landscape scale as urbanisation and 3D connectivity significantly structured the taxonomic and functional composition of wild bee (sociality, nesting, diet, body size) and hoverfly (larval food type, migratory status) communities. We identified urban winners and losers attributed to taxon-specific responses to urban filters. Our results suggest that insect pollinator conservation needs to take place primarily at the landscape level while considering species traits, especially by increasing habitat connectivity.


Asunto(s)
Polinización , Urbanización , Animales , Abejas , Ciudades , Ecosistema , Fenotipo , Polinización/fisiología
6.
Ambio ; 51(11): 2261-2277, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35594005

RESUMEN

Pollen allergies have been on the rise in cities, where anthropogenic disturbances, warmer climate and introduced species are shaping novel urban ecosystems. Yet, the allergenic potential of these urban ecosystems, in particular spontaneous vegetation outside parks and gardens, remains poorly known. We quantified the allergenic properties of 56 dry grasslands along a double gradient of urbanisation and plant invasion in Berlin (Germany). 30% of grassland species were classified as allergenic, most of them being natives. Urbanisation was associated with an increase in abundance and diversity of pollen allergens, mainly driven by an increase in allergenic non-native plants. While not inherently more allergenic than native plants, the pool of non-natives contributed a larger biochemical diversity of allergens and flowered later than natives, creating a broader potential spectrum of allergy. Managing novel risks to urban public health will involve not only targeted action on allergenic non-natives, but also policies at the habitat scale favouring plant community assembly of a diverse, low-allergenicity vegetation. Similar approaches could be easily replicated in other cities to provide a broad quantification and mapping of urban allergy risks and drivers.


Asunto(s)
Hipersensibilidad , Urbanización , Alérgenos , Ecosistema , Pradera , Hipersensibilidad/epidemiología , Hipersensibilidad/etiología , Plantas
7.
Ecol Evol ; 11(23): 17043-17059, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938491

RESUMEN

Urbanization is occurring around the globe, changing environmental conditions and influencing biodiversity and ecosystem functions. Urban domestic gardens represent a small-grained mosaic of diverse habitats for numerous species. The challenging conditions in urban gardens support species possessing certain traits, and exclude other species. Functional diversity is therefore often altered in urban gardens. By using a multi-taxa approach focused on native grassland plants and ground-dwelling invertebrates with overall low mobility (snails, slugs, spiders, millipedes, woodlice, ants, rove beetles), we examined the effects of urbanization (distance to city center, percentage of sealed area) and garden characteristics on functional dispersion, functional evenness, habitat preferences and body size. We conducted a field survey in 35 domestic gardens along a rural-urban gradient in Basel, Switzerland. The various groups showed different responses to urbanization. Functional dispersion of native grassland plants decreased with increasing distance to the city center, while functional dispersion of ants decreased with increasing percentage of sealed area. Functional evenness of ants increased with increasing distance to the city center and that of rove beetles decreased with increasing percentage of sealed area. Contrary to our expectation, in rove beetles, the proportion of generalists decreased with increasing percentage of sealed area in the surroundings, and the proportion of species preferring dry conditions increased with increasing distance to the city center. Body size of species increased with distance to city center for slugs, spiders, millipedes, ants, and rove beetles. Local garden characteristics had few effects on functional diversity and habitat preferences of the groups examined. Our study supports the importance of using multi-taxa approaches when examining effects of environmental change on biodiversity. Considering only a single group may result in misleading findings for overall biodiversity. The ground-dwelling invertebrates investigated may be affected in different ways from the more often-studied flying pollinators or birds.

8.
Sci Total Environ ; 778: 146244, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714820

RESUMEN

The increase in artificial light at night (ALAN) is widely considered as a major driver for the worldwide decline of nocturnal pollinators such as moths. However, the relationship between light and trees as 'islands of shade' within urban areas has not yet been fully understood. Here, we studied (1) the effects of three landscape variables, i.e. sources of ALAN (mercury vapour/LED street lamps; overall light pollution), impervious surfaces (e.g. roads, parking lots and buildings), and tree cover on species richness and abundance of two major macro-moth families (Noctuidae and Geometridae) and (2) the potential mitigating effect of trees on macro-moths attracted to ALAN. We undertook a landscape-scale study on 22 open green areas along an urban-rural gradient within Berlin, Germany, using light traps to collect moths. Macro-moths were identified to species level and GLMMs applied with the three landscape variables at different scales (100 m, 500 m and 1000 m). We found a significant negative effect of mercury vapour street lamps on macro-moth species richness, while impervious surfaces showed significant negative effects on abundance (total and Geometridae). We further found significant positive effects of tree cover density on species richness and abundance (total and Geometridae). Effects of tree cover, however, were mostly driven by one site. LED lamps showed no predictive effects. A negative effect of ALAN (MV lamps and overall light) on macro-moths was most prominent in areas with low tree coverage, indicating a mitigating effect of trees on ALAN. We conclude that mercury vapour street lamps should be replaced by ecologically more neutral ALAN, and that in lit and open areas trees could be planted to mitigate the negative effect of ALAN on nocturnal pollinators. In addition, sources of ALAN should be carefully managed, using movement detection technology and other means to ensure that light is only produced when necessary.


Asunto(s)
Mariposas Nocturnas , Árboles , Animales , Berlin , Contaminación Ambiental , Alemania , Luz
9.
PLoS One ; 15(10): e0240061, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33007013

RESUMEN

Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages. Private domestic gardens contribute a significant share of total green area in cities, but their biodiversity has received relatively little attention. Previous studies mainly considered plants, flying invertebrates such as bees and butterflies, and birds. By using a multi-taxa approach focused on less mobile, ground-dwelling invertebrates, we examined the influence of local garden characteristics and landscape characteristics on species richness and abundance of gastropods, spiders, millipedes, woodlice, ants, ground beetles and rove beetles. We assume that most of the species of these groups are able to complete their entire life cycle within a single garden. We conducted field surveys in thirty-five domestic gardens along a rural-urban gradient in Basel, Switzerland. Considered together, the gardens examined harboured an impressive species richness, with a mean share of species of the corresponding groups known for Switzerland of 13.9%, ranging from 4.7% in ground beetles to 23.3% in woodlice. The overall high biodiversity is a result of complementary contributions of gardens harbouring distinct species assemblages. Indeed, at the garden level, species richness of different taxonomical groups were typically not inter-correlated. The exception was ant species richness, which was correlated with those of gastropods and spiders. Generalised linear models revealed that distance to the city centre is an important driver of species richness, abundance and composition of several groups, resulting in an altered species composition in gardens in the centre of the city. Local garden characteristics were important drivers of gastropod and ant species richness, and the abundance of spiders, millipedes and rove beetles. Our study shows that domestic gardens make a valuable contribution to regional biodiversity. Thus, domestic urban gardens constitute an important part of green infrastructure, which should be considered by urban planners.


Asunto(s)
Biodiversidad , Jardines , Invertebrados/clasificación , Población Rural , Animales , Ciudades , Conservación de los Recursos Naturales , Urbanización
10.
Glob Chang Biol ; 26(8): 4401-4417, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32359002

RESUMEN

Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.


Asunto(s)
Ecosistema , Especies Introducidas , Biodiversidad , Evolución Biológica , Plantas , Urbanización
11.
Sci Rep ; 9(1): 6375, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31011154

RESUMEN

Pollination is a key ecological process, and invasive alien plant species have been shown to significantly affect plant-pollinator interactions. Yet, the role of the environmental context in modulating such processes is understudied. As urbanisation is a major component of global change, being associated with a range of stressors (e.g. heat, pollution, habitat isolation), we tested whether the attractiveness of a common invasive alien plant (Robinia pseudoacacia, black locust) vs. a common native plant (Cytisus scoparius, common broom) for pollinators changes with increasing urbanisation. We exposed blossoms of both species along an urbanisation gradient and quantified different types of pollinator interaction with the flowers. Both species attracted a broad range of pollinators, with significantly more visits for R. pseudoacacia, but without significant differences in numbers of insects that immediately accessed the flowers. However, compared to native Cytisus, more pollinators only hovered in front of flowers of invasive Robinia without visiting those subsequently. The decision rate to enter flowers of the invasive species decreased with increasing urbanisation. This suggests that while invasive Robinia still attracts many pollinators in urban settings attractiveness may decrease with increasing urban stressors. Results indicated future directions to deconstruct the role of different stressors in modulating plant-pollinator interactions, and they have implications for urban development since Robinia can be still considered as a "pollinator-friendly" tree for certain urban settings.


Asunto(s)
Insectos/fisiología , Especies Introducidas , Plantas/metabolismo , Polinización/fisiología , Urbanización , Animales , Cytisus/fisiología , Flores/fisiología , Robinia/fisiología
12.
PLoS One ; 13(7): e0199980, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995916

RESUMEN

In agricultural landscapes, semi-natural habitats are scarce and remaining habitat patches are largely isolated. However, linear landscape elements might facilitate dispersal of plant species through the agricultural landscape matrix. We investigated the following research questions: 1. are open linear landscape elements (LLE) effective corridors for dispersal of vascular plant species? 2. Which plant species, with respect to phytosociological group and dispersal-distance class, do use LLE as corridors? 3. To which extent is floristic similarity of communities influenced by dispersal through corridors? Field work was carried out in agricultural landscapes of Northwest Germany. We sampled 50 vegetation relevés on open linear landscape elements i.e. field margins (incl. road verges) and ditches, in eight 1-km2 study areas. Then, we calculated Jaccard similarities of all plot pairs within study areas using either all species or only species of certain phytosociological groups or dispersal-distance classes. We assessed the isolation of the plots from each other using both Euclidean distance and resistance distance along LLE. Resistance distance reflected the degree of connectivity of the LLE network between the plots. A stronger effect on Jaccard similarity of resistance distance compared to Euclidean distance would indicate corridor dispersal of plants through LLE. Relationships between Jaccard similarity and the two isolation measures were analysed with Generalised Linear Mixed Models. Resistance distance of LLE had a stronger negative effect on Jaccard similarity than Euclidean distance in field margins, but not in ditches. This was found for species of 'meadows and pastures' and short to medium dispersal distance. In plot pairs that were highly connected by LLE, the models suggested that roughly 20% of all species occurred in both plots due to dispersal through LLE. Other species groups did not respond more strongly to resistance distance than to Euclidean distance. We conclude that linear landscape elements in agricultural landscapes are effective corridors for dispersal of plant species that are confined to semi-natural habitats, such as traditional grasslands, and lack mechanisms of long-distance dispersal.


Asunto(s)
Agricultura , Dispersión de las Plantas , Ecosistema , Modelos Estadísticos
13.
Zootaxa ; 4216(4): zootaxa.4216.4.6, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28183116

RESUMEN

In this paper we propose Trebacosa brunhesi Villepoux, 2007 as a junior synonym of Trebacosa europaea Szinetár & Kan-csal, 2007 based on the examination of specimens from all the localities from where those species are known. Illustration of the type species of the genus, Trebacosa marxi (Stone, 1890) and specimens from all known localities of T. europaea are given to show both the inter- and the intraspecific differences of the genus. Scanning electron micrographs were used to illustrate the detailed structure of the female's genitalia.


Asunto(s)
Arañas/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , Ecosistema , Femenino , Masculino , Tamaño de los Órganos , Arañas/anatomía & histología , Arañas/crecimiento & desarrollo
14.
PeerJ ; 4: e2729, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917318

RESUMEN

In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes.

15.
Biodivers Data J ; (4): e7057, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099549

RESUMEN

BACKGROUND: Urban green spaces can harbor a considerable species richness of plants and animals. A few studies on single species groups indicate important habitat functions of cemeteries, but this land use type is clearly understudied compared to parks. Such data are important as they (i) illustrate habitat functions of a specific, but ubiquitous urban land-use type and (ii) may serve as a basis for management approaches. NEW INFORMATION: We sampled different groups of plants and animals in the Weißensee Jewish Cemetery in Berlin (WJC) which is one of the largest Jewish cemeteries in Europe. With a total of 608 species of plants and animals, this first multi-taxon survey revealed a considerable biological richness in the WJC. In all, 363 wild-growing vascular plant, 72 lichen and 26 bryophyte taxa were recorded. The sampling also yielded 34 bird and 5 bat species as well as 39 ground beetle, 5 harvestman and 64 spider species. Some species are new records for Berlin.

16.
Glob Chang Biol ; 22(2): 594-603, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26390918

RESUMEN

As drivers of global change, biological invasions have fundamental ecological consequences. However, it remains unclear how invasive plant effects on resident animals vary across ecosystems, animal classes, and functional groups. We performed a comprehensive meta-analysis covering 198 field and laboratory studies reporting a total of 3624 observations of invasive plant effects on animals. Invasive plants had reducing (56%) or neutral (44%) effects on animal abundance, diversity, fitness, and ecosystem function across different ecosystems, animal classes, and feeding types while we could not find any increasing effect. Most importantly, we found that invasive plants reduced overall animal abundance, diversity and fitness. However, this significant overall effect was contingent on ecosystems, taxa, and feeding types of animals. Decreasing effects of invasive plants were most evident in riparian ecosystems, possibly because frequent disturbance facilitates more intense plant invasions compared to other ecosystem types. In accordance with their immediate reliance on plants for food, invasive plant effects were strongest on herbivores. Regarding taxonomic groups, birds and insects were most strongly affected. In insects, this may be explained by their high frequency of herbivory, while birds demonstrate that invasive plant effects can also cascade up to secondary consumers. Since data on impacts of invasive plants are rather limited for many animal groups in most ecosystems, we argue for overcoming gaps in knowledge and for a more differentiated discussion on effects of invasive plant on native fauna.


Asunto(s)
Ecosistema , Especies Introducidas , Malezas , Animales , Biodiversidad , Densidad de Población
17.
PLoS One ; 10(9): e0137723, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26359665

RESUMEN

Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.


Asunto(s)
Artrópodos , Biodiversidad , Ecosistema , Bosques , Árboles , Animales
18.
Insect Sci ; 20(5): 662-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23956202

RESUMEN

Climate change is expected to cause major consequences on biodiversity. Understanding species-specific reactions, such as species shifts, species declines, and changes in population dynamics is a key issue to quantify large-scale impacts of climate change on biotic communities. As it is often impossible or at least impracticable to conduct large-scale experiments on biotic responses to climate change, studies at a smaller scale may be a useful alternative. In our study, we therefore tested responses of grassland arthropods (carabid beetles, spiders, grasshoppers) to simulated climate change in terms of species activity densities and diversity. We conducted a controlled field experiment by changing water and microclimatic conditions at a small scale (16 m(2) ). Roof constructions were used to increase drought-like conditions, whereas water supply was enhanced by irrigation. In all, 2 038 carabid beetles (36 species), 4 893 spiders (65 species), and 303 Orthoptera (4 species) were caught using pitfall traps from May to August, 2010. During our experiment, we created an artificial small-scale climate change; and statistics revealed that these changes had short-term effects on the total number of individuals and Simpson diversity of the studied arthropod groups. Moreover, our results showed that certain species might react very quickly to climate change in terms of activity densities, which in turn might influence diversity due to shifts in abundance patterns. Finally, we devised methodological improvements that may further enhance the validity of future studies.


Asunto(s)
Cambio Climático , Escarabajos/fisiología , Ecosistema , Saltamontes/fisiología , Arañas/fisiología , Animales , Escarabajos/clasificación , Saltamontes/clasificación , Humedad , Modelos Biológicos , Suelo/química , Arañas/clasificación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...